Реакции на неблагоприятные факторы среды только при некоторых условиях являются губительными для живых организмов, а в большинстве случаев они имеют адаптивное значение.
Поэтому эти ответные реакции были названы Селье «общим адаптационным синдромом». В более поздних работах термины «стресс» и «общий адаптационный синдром» он употреблял как синонимы.
Адаптация — это генетически детерминированный процесс формирования защитных систем, которые обеспечивают повышение устойчивости и протекание онтогенеза в неблагоприятных для него условиях.
Адаптация является одним из важнейших механизмов, который повышает устойчивость биологической системы, в том числе растительного организма, в изменившихся условиях существования. Чем лучше организм адаптирован к какому-то фактору, тем он устойчивее к его колебаниям.
Генотипически обусловленная способность организма изменять метаболизм в определенных пределах в зависимости от действия внешней среды называется нормой реакции. Она контролируется генотипом и свойственна всем живым организмам. Большинство модификаций, которые возникают в пределах нормы реакции, имеют адаптивное значение. Они соответствуют изменениям среды обитания и обеспечивают лучшую выживаемость растений при колебаниях условии окружающей среды. В этой связи такие модификации имеют эволюционное значение. Термин «норма реакции» введен В.Л. Йогансеном (1909).
Чем больше способность вида или сорта модифицироваться в соответствии с окружающей средой, тем шире его норма реакции и выше способность к адаптации. Это свойство отличает устойчивые сорта сельскохозяйственных культур. Как правило, несильные и кратковременные изменения факторов внешней среды не приводят к существенным нарушениям физиологических функций растений. Это обусловлено их способностью сохранять относительное динамическое равновесие внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. В то же время резкие и продолжительные воздействия приводят к нарушению многих функций растения, а нередко и к его гибели.
Адаптация включает в себя все процессы и приспособления (анатомические, морфологические, физиологические, поведенческие и др.), которые способствуют повышению устойчивости и способствуют выживанию вида.
1. Анатомо-морфологические приспособления. У некоторых представителей ксерофитов длина корневой системы достигает несколько десятков метров, что позволяет растению использовать грунтовую воду и не испытывать недостатка влаги в условиях почвенной и атмосферной засухи.
У других ксерофитов наличие толстой кутикулы, опушенность листьев, превращение листьев в колючки уменьшают потери воды, что очень важно в условиях недостатка влаги.
Жгучие волоски и колючки защищают растения от поедания животными. Деревья в тундре или на больших горных высотах имеют вид приземистых стелющихся кустарников, зимой они засыпаются снегом, который защищает их от сильных морозов.
В горных районах с большими суточными колебаниями температуры растения часто имеют форму распластанных подушек с плотно расположенными многочисленными стеблями. Это позволяет сохранять внутри подушек влагу и относительно равномерную в течение суток температуру.
У болотных и водных растений формируется специальная воздухоносная паренхима (аэренхима), которая является резервуаром воздуха и облегчает дыхание частей растения, погруженных в воду.
2. Физиолого-биохимические приспособления. У суккулентов приспособлением для произрастания в условиях пустынь и полупустынь является усвоение СО2 в ходе фотосинтеза по CAM-пути. У этих растений устьица днем закрыты. Таким образом, растение сохраняет внутренние запасы воды от испарения. В пустынях вода является главным фактором, ограничивающим рост растений.
Устьица открываются ночью, и в это время происходит поступление СО2 в фотосинтезирующие ткани. Последующее вовлечение СО2 в фотосинтетический цикл происходит днем уже при закрытых устьицах. К физиолого-биохимическим приспособлениям относятся способность устьиц открываться и закрываться, в зависимости от внешних условий.
Синтез в клетках абсцизовой кислоты, пролина, защитных белков, фитоалексинов, фитонцидов, повышение активности ферментов, противодействующих окислительному распаду органических веществ, накопление в клетках сахаров и ряд других изменений в обмене веществ содействует повышению устойчивости растений к неблагоприятным условиям внешней среды.
Одна и та же биохимическая реакция может осуществляться несколькими молекулярными формами одного и того же фермента (изоферментами), при этом каждая изоформа проявляет каталитическую активность в относительно узком диапазоне некоторого параметра окружающей среды, например температуры.
Наличие целого ряда изоферментов позволяет растению осуществлять реакцию в значительно более широком диапазоне температур, по сравнению с каждым отдельным изоферментом. Это дает возможность растению успешно выполнять жизненные функции в изменяющихся температурных условиях.
3. Поведенческие приспособления, или избегание действия неблагоприятного фактора. Примером могут служить эфемеры и эфемероиды (мак, звездчатка, крокусы, тюльпаны, подснежники). Они проходят весь цикл своего развития весной за 1,5-2 месяца, еще до наступления жары и засухи. Таким образом, они как бы уходят, или избегают попадания под влияние стрессора.
Подобным образом раннеспелые сорта сельскохозяйственных культур формируют урожай до наступления неблагоприятных сезонных явлений: августовских туманов, дождей, заморозков. Поэтому селекция многих сельскохозяйственных культур направлена на создание раннеспелых сортов. Многолетние растения зимуют в виде корневищ и луковиц в почве под снегом, защищающим их от вымерзания.
Адаптация растений к неблагоприятным факторам осуществляется одновременно на многих уровнях регуляции — от отдельной клетки до фитоценоза. Чем выше уровень организации (клетка организм, популяция) тем большее число механизмов одновременно участвует в адаптации растений к стрессам.
Регуляция метаболических и адаптационных процессов внутри клетки осуществляется с помощью систем: метаболической (ферментативной); генетической; мембранной. Эти системы тесно связаны между собой. Так, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Синтез ферментов и их активность контролируются на генетическом уровне, в то же время ферменты регулируют нуклеиновый обмен в клетке.
На организменном уровне к клеточным механизмам адаптации добавляются новые, отражающие взаимодействие органов. В неблагоприятных условиях растения создают и сохраняют такое количество плодоэлементов, которое в достаточном количестве обеспечено необходимыми веществами, чтобы сформировать полноценные семена.
Например, в соцветиях культурных злаков и в кронах плодовых деревьев в неблагоприятных условиях более половины заложившихся завязей могут опасть. Такие изменения основаны на конкурентных отношениях между органами за физиологически активные и питательные вещества.
В условиях стрессов резко ускоряются процессы старения и опадения нижних листьев. При этом нужные растениям вещества перемещаются из них в молодые органы, отвечая стратегии выживания организма. Благодаря реутилизации питательных веществ из нижних листьев сохраняются жизнеспособными более молодые — верхние листья.
Действуют механизмы регенерации утраченных органов. Например, поверхность ранения покрывается вторичной покровной тканью (раневой перидермой), рана на стволе или ветке зарубцовывается наплывами (каллюсами). При утрате верхушечного побега у растений пробуждаются спящие почки и усиленно развиваются боковые побеги.
Весеннее восстановление листьев вместо опавших осенью — это также пример естественной регенерации органов. Регенерация как биологическое приспособление, обеспечивающее вегетативное размножение растений отрезками корня, корневища, слоевища, стеблевыми и листовыми черенками, изолированными клетками, отдельными протопластами, имеет большое практическое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и пр.
В процессах защиты и адаптации на уровне растения участвует и гормональная система. Например, при действии неблагоприятных условий в растении резко возрастает содержание ингибиторов роста: этилена и абсциссой кислоты. Они снижают обмен веществ, тормозят ростовые процессы, ускоряют старение, опадение органов, переход растения в состояние покоя.
Торможение функциональной активности в условиях стресса под влиянием ингибиторов роста является характерной для растений реакцией. Одновременно с этим в тканях снижается содержание стимуляторов роста: цитокинина, ауксина и гиббереллинов.
На популяционном уровне присоединяется отбор, который приводит к появлению более приспособленных организмов. Возможность отбора определяется существованием внутрипопуляционной изменчивости устойчивости растений к разным факторам внешней среды. Примером внутрипопуляционной изменчивости по устойчивости может служить недружность появления всходов на засоленной почве и увеличение варьирования сроков прорастания при усилении действия стрессора.
Вид в современном представлении состоит из большого числа биотипов — более мелких экологических единиц, генетически одинаковых, но проявляющих разную устойчивость к факторам внешней среды. В различных условиях не все биотипы одинаково жизненны, и в результате конкуренции остаются лишь те из них, которые наиболее отвечают данным условиям.
То есть, устойчивость популяции (сорта) к тому или иному фактору определяется устойчивостью составляющих популяцию организмов. Устойчивые сорта имеют в своем составе набор биотипов, обеспечивающих хорошую продуктивность даже в неблагоприятных условиях.
Вместе с тем, в процессе многолетнего культивирования у сортов изменяется состав и соотношение биотипов в популяции, что отражается на продуктивности и качестве сорта, часто не в лучшую сторону.
Итак, адаптация включает в себя все процессы и приспособления, повышающие устойчивость растений к неблагоприятным условиям среды (анатомические, морфологические, физиологические, биохимические, поведенческие, популяционные и др.)
Но для выбора наиболее эффективного пути адаптации главным является время, в течение которого организм должен приспособиться к новым условиям.
При внезапном действии экстремального фактора ответ не может быть отложен, он должен последовать незамедлительно, чтобы исключить необратимые повреждения растения. При длительных воздействиях небольшой силы адаптационные перестройки происходят постепенно, при этом увеличивается выбор возможных стратегий.
В этой связи различают три главные стратегии адаптации: эволюционные, онтогенетические и срочные. Задача стратегии — эффективное использование имеющихся ресурсов для достижения основной цели — выживания организма в условиях стресса. Стратегия адаптации направлена на поддержание структурной целостности жизненно важных макромолекул и функциональной активности клеточных структур, сохранение систем регуляции жизнедеятельности, обеспечение растений энергией.
Эволюционные, или филогенетические адаптации (филогенез — развитие биологического вида во времени) — это адаптации, возникающие в ходе эволюционного процесса на основе генетических мутаций, отбора и передающиеся по наследству. Они являются наиболее надежными для выживания растений.
У каждого вида растений в процессе эволюции выработались определенные потребности к условиям существования и приспособленность к занимаемой им экологической нише, стойкое приспособление организма к среде обитания. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в результате длительного действия соответствующих условий.
Так, теплолюбивые и короткодневные растения характерны для южных широт, менее требовательные к теплу и длиннодневные растения — для северных. Хорошо известны многочисленные эволюционные адаптации к засухе растений-ксерофитов: экономное расходование воды, глубоко залегающая корневая система, сбрасывание листьев и переход в состояние покоя и другие приспособления.
В этой связи сорта сельскохозяйственных растений проявляют устойчивость именно к тем факторам внешней среды, на фоне которых проводится селекция и отбор продуктивных форм. Если отбор проходит в ряде последовательных генераций на фоне постоянного влияния какого-либо неблагоприятного фактора, то устойчивость сорта к нему может быть существенно увеличена. Закономерно, что сорта селекции НИИ сельского хозяйства Юго-Востока (г. Саратов), более устойчивы к засухе, чем сорта, созданные в селекционных центрах Московской области. Таким же путем в экологических зонах с неблагоприятными почвенноклиматическими условиями сформировались устойчивые местные сорта растений, а эндемичные виды растений устойчивы именно к тому стрессору, который выражен в ареале их обитания.
Сорт | Происхождение | Устойчивость |
Энита | Подмосковье | Средне засухоустойчивый |
Саратовская 29 | Саратовская обл. | Засухоустойчивый |
Комета | Свердловская обл. | Засухоустойчивый |
Каразино | Бразилия | Кислотоустойчивый |
Прелюдия | Бразилия | Кислотоустойчивый |
Колониас | Бразилия | Кислотоустойчивый |
Тринтани | Бразилия | Кислотоустойчивый |
ППГ-56 | Казахстан | Солеустойчивый |
Ошская | Киргизия | Солеустойчивый |
Сурхак 5688 | Таджикистан | Солеустойчивый |
Мессель | Норвегия | Соленеустойчивый |
В природной обстановке условия среды обычно изменяются очень быстро, и времени, в течение которого стрессовый фактор достигает повреждающего уровня, недостаточно для формирования эволюционных приспособлений. В этих случаях растения используют не постоянные, а индуцируемые стрессором защитные механизмы, формирование которых генетически предопределено (детерминировано).
Онтогенетические (фенотипические) адаптации не связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода адаптаций требует сравнительно много времени, поэтому их называют долговременными адаптациями. Одним из таких механизмов является способность ряда растений формировать водосберегающий путь фотосинтеза CAM-типа в условиях водного дефицита, вызванного засухой, засолением, действием низких температур и других стрессорами.
Эта адаптация связана с индукцией экспрессии «неактивного» в нормальных условиях гена фосфоенолпируваткарбоксилазы и генов других ферментов CAM-пути усвоения СО2, с биосинтезом осмолитов (пролина), с активацией антиоксидантных систем и изменением суточных ритмов устьичных движений. Все это приводит к очень экономному расходованию воды.
У полевых культур, например, у кукурузы, аэренхима в обычных условиях произрастания отсутствует. Но в условиях затопления и недостатка в тканях кислорода в корнях у нее происходит гибель части клеток первичной коры корня и стебля (апоптоз, или программируемая смерть клеток). На их месте образуются полости, по которым кислород из надземной части растения транспортируется в корневую систему. Сигналом для гибели клеток является синтез этилена.
Срочная адаптация происходит при быстрых и интенсивных изменениях условий обитания. В основе ее лежит образование и функционирование шоковых защитных систем. К шоковым защитным системам относятся, например, система белков теплового шока, которая образуется в ответ на быстрое повышение температуры.
Эти механизмы обеспечивают кратковременные условия выживания при действии повреждающего фактора и тем самым создают предпосылки для формирования более надежных долговременных специализированных механизмов адаптации. Примером специализированных механизмов адаптации является новообразование антифризных белков при низких температурах или синтез сахаров в процессе перезимовки озимых культур.
Вместе с тем, если повреждающее действие фактора превышает защитные и репарационные возможности организма, то неминуемо наступает смерть. В этом случае организм погибает на этапе срочной или на этапе специализированной адаптации в зависимости от интенсивности и продолжительности действия экстремального фактора.
Различают специфические и неспецифические (общие) ответные реакции растений на стрессор.
Неспецифические реакции не зависят от природы действующего фактора. Они одни и те же при действии высокой и низкой температуры, недостатка или избытка влаги, высокой концентрации солей в почве или вредных газов в воздухе. Во всех случаях в клетках растений повышается проницаемость мембран, нарушается дыхание, возрастает гидролитический распад веществ, увеличивается синтез этилена и абсцизовой кислоты, тормозится деление и растяжение клеток.
В таблице представлен комплекс неспецифических изменений, протекающих у растений под влиянием различных факторов внешней среды.
Параметры | Характер изменения параметров в условиях | |||
засухи | засоления | высокой температуры | низкой температуры | |
Концентрация ионов в тканях | Растет | Растет | Растет | Растет |
Активность воды в клетке | Падает | Падает | Падает | Падает |
Осмотический потенциал клетки | Растет | Растет | Растет | Растет |
Водоудерживающая способность | Растет | Растет | Растет | — |
Водный дефицит | Растет | Растет | Растет | — |
Проницаемость протоплазмы | Растет | Растет | Растет | — |
Интенсивность транспирации | Падает | Падает | Растет | Падает |
Эффективность транспирации | Падает | Падает | Падает | Падает |
Энергетическая эффективность дыхания | Падает | Падает | Падает | — |
Интенсивность дыхания | Растет | Растет | Растет | — |
Фотофосфорилирование | Снижается | Снижается | — | Снижается |
Стабилизация ядерной ДНК | Растет | Растет | Растет | Растет |
Функциональнаяя активность ДНК | Снижается | Снижается | Снижается | Снижается |
Концентрация пролина | Растет | Растет | Растет | — |
Содержание водорастворимых белков | Растет | Растет | Растет | Растет |
Синтетические реакции | Подавлены | Подавлены | Подавлены | Подавлены |
Поглощение ионов корнями | Подавлено | Подавлено | Подавлено | Подавлено |
Транспорт веществ | Подавлен | Подавлен | Подавлен | Подавлен |
Концентрация пигментов | Падает | Падает | Падает | Падает |
Деление клеток | Тормозится | Тормозится | — | — |
Растяжение клеток | Подавлено | Подавлено | — | — |
Число плодоэлементов | Снижено | Снижено | Снижено | Снижено |
Старение органов | Ускорено | Ускорено | Ускорено | — |
Биологический урожай | Понижен | Понижен | Понижен | Понижен |
Исходя из данных таблицы видно, что устойчивость растений к нескольким факторам сопровождается однонаправленными физиологическими изменениями. Это дает основание считать, что повышение устойчивости растений к одному фактору может сопровождаться повышением устойчивости к другому. Это подтверждено экспериментами.
Опытами в Институте физиологии растений РАН (Вл. В. Кузнецов и др.) показано, что кратковременная тепловая обработка растений хлопчатника сопровождается повышением их устойчивости к последующему засолению. А адаптация растений к засолению приводит к повышению их устойчивости к высокой температуре.
Тепловой шок повышает способность растений приспосабливаться к последующей засухе и, наоборот, в процессе засухи повышается устойчивость организма к высокой температуре. Кратковременное воздействие высокой температурой повышает устойчивость к тяжелым металлам и УФ-Б облучению. Предшествующая засуха способствует выживанию растений в условиях засоления или холода.
Процесс повышения устойчивости организма к данному экологическому фактору в результате адаптации к фактору иной природы называется кросс-адаптацией.
Для изучения общих (неспецифических) механизмов устойчивости большой интерес представляет ответ растений на факторы, вызывающие у растений водный дефицит: на засоление, засуху, низкие и высокие температуры и некоторые другие. На уровне целого организма все растения реагируют на водный дефицит одинаково.
Характерно угнетение роста побегов, усиление роста корневой системы, синтеза абсцизовой кислоты, снижение устьичной проводимости. Спустя некоторое время, ускоренно стареют нижние листья, и наблюдается их гибель. Все эти реакции направлены на снижение расходования воды за счет сокращения испаряющей поверхности, а также за счет увеличения поглотительной деятельности корня.
Специфические реакции — это реакции на действие какого-либо одного стрессового фактора. Так, фитоалексины (вещества со свойствами антибиотиков) синтезируются в растениях в ответ на контакт с болезнетворными микроорганизмами (патогенами).
Специфичность или не специфичность ответных реакций, подразумевает, с одной стороны, отношение растения к различным стрессорам и, с другой стороны, характерность реакций растений различных видов и сортов на один и тот же стрессор.
Проявление специфических и неспецифических ответных реакций растений зависит от силы стресса и скорости его развития. Специфические ответные реакции возникают чаще, если стресс развивается медленно, и организм успевает перестроиться и приспособиться к нему.
Неспецифические реакции обычно возникают при более кратковременном и сильном действии стрессора. Функционирование неспецифических (общих) механизмов устойчивости позволяет растению избегать больших затрат энергии для формирования специализированных (специфических) механизмов адаптации в ответ на любое отклонение от нормы условий их обитания.
Устойчивость растений к стрессовому воздействию зависит от фазы онтогенеза. Наиболее устойчивы растения и органы растений в покоящемся состоянии: в виде семян, луковиц; древесные многолетние — в состоянии глубокого покоя после листопада. Наиболее чувствительны растения в молодом возрасте, так как в условиях стресса процессы роста повреждаются в первую очередь.
Вторым критическим периодом является период формирования гамет и оплодотворения. Действие стресса в этот период приводит к снижению репродуктивной функции растений и снижению урожая.
Если стрессовые условия повторяются и имеют небольшую интенсивность, то они способствуют закаливанию растений. На этом основаны методы повышения устойчивости к низким температурам, жаре, засолению, повышенному содержанию в воздухе вредных газов.
Надежность растительного организма определяется его способностью не допускать или ликвидировать сбои на разных уровнях биологической организации: молекулярном, субклеточном, клеточном, тканевом, органном, организменном и популяционном.
Для предотвращения сбоев в жизнедеятельности растений под влиянием неблагоприятных факторов используются принципы избыточности, гетерогенности функционально равнозначных компонентов, системы репарации утраченных структур. Избыточность структур и функциональных возможностей — один из основных способов обеспечения надежности систем.
Избыточность и резервирование имеет многообразные проявления. На субклеточном уровне повышению надежности растительного организма способствуют резервирование и дублирование генетического материала. Это обеспечивается, например, двойной спиралью ДНК, увеличением плоидности.
Надежность функционирования растительного организма в изменяющихся условиях поддерживается также благодаря наличию разнообразных молекул информационной РНК и образованию гетерогенных полипептидов. К ним относятся и изоферменты, которые катализируют одну и ту же реакцию, но отличаются по свои физико-химическим свойствам и устойчивостью структуры молекул в изменяющихся условиях среды.
На уровне клетки пример резервирования — избыток клеточных органелл. Так, установлено, что для обеспечения растения продуктами фотосинтеза достаточно части имеющихся хлоропластов. Остальные хлоропласты как бы остаются в резерве. То же касается и общего содержания хлорофилла. Избыточность проявляется также в большом накоплении предшественников для биосинтеза многих соединений.
На организменном уровне принцип избыточности выражается в образовании и в разновременной закладке большего, чем требуется для смены поколений, числа побегов, цветков, колосков, в огромном количестве пыльцы, семязачатков, семян.
На популяционном уровне принцип избыточности проявляется в большом числе особей, различающихся по устойчивости к тому или иному стрессовому фактору.
Системы репарации также работают на разных уровнях — молекулярном, клеточном, организменном, популяционном и биоценотическом. Репаративные процессы идут с затратой энергии и пластических веществ, поэтому репарация возможна только при сохранении достаточной интенсивности обмена веществ.
Если обмен веществ прекращается, то прекращается и репарация. В экстремальных условиях внешней среды особенно большое значение имеет сохранение дыхания, так как именно дыхание обеспечивает энергией репарационные процессы.
Восстановительная способность клеток адаптированных организмов определяется устойчивостью их белков к денатурации, а именно устойчивостью связей, которые определяют вторичную, третичную и четвертичную структуру белка. Например, устойчивость зрелых семян к высоким температурам, как правило, связана с тем, что после обезвоживания их белки приобретают устойчивость к денатурации.
Главным источником энергетического материала как субстрата дыхания является фотосинтез, поэтому от устойчивости и способности фотосинтетического аппарата восстанавливаться после повреждений зависит энергообеспечение клетки и связанные с ним репарационные процессы. Для поддержания фотосинтеза в экстремальных условиях в растениях активизируется синтез компонентов мембран тилакоидов, происходит торможение окисления липидов, восстанавливается ультраструктура пластид.
На организменном уровне примером регенерации может служить развитие замещающих побегов, пробуждение спящих почек при повреждении точек роста.